If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-40x=725
We move all terms to the left:
8x^2-40x-(725)=0
a = 8; b = -40; c = -725;
Δ = b2-4ac
Δ = -402-4·8·(-725)
Δ = 24800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24800}=\sqrt{400*62}=\sqrt{400}*\sqrt{62}=20\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-20\sqrt{62}}{2*8}=\frac{40-20\sqrt{62}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+20\sqrt{62}}{2*8}=\frac{40+20\sqrt{62}}{16} $
| 4(4x+3)=16 | | 25(x-2)=5(3x+1) | | 22−a=−2 | | 6(3x+4)=36(2x-1) | | 22−a =−2 | | 4(2c+2)=12 | | X^2+36x-128=0 | | 4+3n=14 | | 10/3=6u | | 20=13+7b | | (X+12)+(x+18)=180 | | F(t)=16t-4t2 | | 4s+18=114 | | 8(-3)x=13 | | 17x-1=15x+1 | | 10-3t=t2 | | 8=3x-114 | | (x-2)^=36 | | 442=550-k(1) | | 442=550-k1 | | x+79°=2x-37° | | 8(3y-2)=3(10-y)+35 | | 3x-1=3.5 | | 2(1-4x)=(-1/2x) | | -2.5x+57.9=15.9+1.8x | | 3x-1*8=28 | | 2n(5n-3)=0 | | 3x²+10x+8=0 | | 100p-7500=0.3*100p | | 8-9+10-6=b | | 2x0.2=4x-0.6 | | 4x^2+10x-144=0 |